1,416 research outputs found

    Agrobacterium-mediated genetic transformation of Miscanthus sinensis

    Get PDF
    Miscanthus species are tall perennial rhizomatous grasses with C4 photosynthesis originating from East Asia, and they are considered as important bioenergy crops for biomass production. In this study, Agrobacterium-mediated transformation system for M. sinensis was developed using embryogenic calli derived from mature seeds. In order to establish a stable system, optimum conditions to obtain highly regenerable and transformation-competent embryogenic calli were investigated, and embryogenic calli were efficiently induced with callus induction medium containing 3 mg L-1 2,4-dichlorophenoxyacetic acid and 25 mM l-proline, at pH 5.7 with an induction temperature of 28 A degrees C. In addition, the embryogenic callus induction and regeneration potentials were compared between seven M. sinensis germplasms collected from several sites in Korea, which revealed that the germplasm SNU-M-045 had superior embryogenic callus induction and regeneration potentials. With this germplasm, the genetic transformation of M. sinensis was performed using Agrobacterium tumefaciens EHA105 carrying pCAMBIA1300 with a green fluorescence protein gene as a reporter. After putative transgenic plants were obtained, the genomic integration of transgenes was confirmed by genomic PCR, transgene expression was validated by Northern blot analysis, and the number of transgene integration was confirmed by DNA gel blot analysis. Furthermore, the Agrobacterium-mediated transformation of M. sinensis was also performed with pCAMBIA3301 which contains an herbicide resistance gene (BAR), and we obtained transgenic M. sinensis plants whose herbicide resistance was confirmed by spraying with BASTA(A (R)). Therefore, we have established a stable Agrobacterium-mediated transformation system for M. sinensis, and also successfully produced herbicide-resistant Miscanthus plants by introducing BAR gene via the established method.X111210Ysciescopu

    Stroke risk among patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis

    Get PDF
    Increased stroke risk among chronic obstructive pulmonary disease patients has not yet been established. In this study, we conducted a systematic review and meta-analysis to assess stroke risk among chronic obstructive pulmonary disease patients. PubMed, EMBASE, and the Cochrane Library were systematically searched from database inception until December 31, 2016 to identify longitudinal observational studies that investigated the association between chronic obstructive pulmonary disease and stroke. Stroke risk was quantified by overall and subgroup analyses, and a pooled hazard ratio was calculated. Study quality was evaluated using the Newcastle-Ottawa Scale. Publication bias was assessed using Begg’s rank correlation test. Eight studies met the inclusion criteria. In a random-effects model, significantly increased stroke risk was observed among chronic obstructive pulmonary disease patients (hazard ratio, 1.30; 95% confidence interval, 1.18-1.43). In subgroup analyses stratified by stroke subtype, study quality, and adjustment by socioeconomic status, the association between increased stroke risk and chronic obstructive pulmonary disease patients was robust. Statistically significant publication bias was not detected. In summary, chronic obstructive pulmonary disease was found to be associated with increased stroke risk. Additional prospective studies are required to elucidate the mechanisms underlying the increase in stroke risk and identify effective preventive interventions

    Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis

    Get PDF
    Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA.1187Ysciescopu

    Generation and chromosome mapping of expressed sequence tags (ESTs) from a human infant thymus

    Get PDF
    In an effort to identify novel genes that are expressed differentially in an infant thymus, we constructed an oligo-d(T) primed cDNA library from a human infant thymus followed by single-run partial sequencing to generate expressed sequence tags (ESTs). Characterization of more than 1400 sequences enabled us to convert human thymus transcripts into 1223 useful ESTs. These ESTs consisted of 613 (50.1%) showing homology to known human genes, 51 (4.2%) matching to genes from other species, 289 (23.6%) matching ESTs of unknown functions, and 182 (14.9%) being novel transcripts. The expression profile of an infant thymus features a high number of genes related to cell division-DNA synthesis and gene-protein expression, indicating the active growth stage of an infant thymus. To identify the chromosomal localization of 43 thymus ESTs, PCR-based mapping was performed using a human-rodent somatic cell hybrid or radiation hybrid mapping panel. The results indicated that several novel genes were determined to be located in the vicinity of previously mapped disease loci; histidinemia loci, plasminogen Tochigi disease loci, Ehlers-Danlos syndrome, hypertriglyceridemia, thyroid resistance locus, ocular albinism, galactosemia, porphyria variegata, Charcot-Marie-tooth disease, FEOM (fibrosis of extraocular muscles), Prader-Willi syndrome.published_or_final_versio

    Thienothiophene-benzotriazole-based semicrystalline linear copolymers for organic field effect transistors

    Get PDF
    A series of thienothiophene-benzotriazole-based semicrystalline copolymers, PTTBTz, PTTBTz-F, and PTTBTz-OR, were synthesized by considering chain linearity, planarity and inter-chain packing by virtue of non-covalent attractive interaction. Fluorine and alkoxy substituents were introduced to modulate the intra- and inter-chain coulombic interactions and crystalline ordering. The fluorine and alkoxy-substituted PTTBTz-F and PTTBTz-OR showed pronounced inter-chain packing with edge-on orientation confirmed by UV-vis absorption and X-ray diffraction measurements. The well-resolved diffraction patterns were obtained for PTTBTz-F and PTTBTz-OR, showing (100)similar to(500) inter-lamellar scattering peaks (d-spacing, 17 similar to 18 angstrom) in the out-of-plane direction and a pi-pi stacking peak (d-spacing, 3.5 similar to 4.1 angstrom) in the in-plane direction. Organic field effect transistor (OFET) devices were fabricated with a bottom gate and top contact geometry. PTTBTz-F (mu(h) = 4.49 x 10(-2) cm(2) V-1 s(-1), on/off ratio = 1.13 x 107) and PTTBTz-OR (mu(h) = 8.39 x 10(-3) cm(2) V-1 s(-1), on/off ratio = 2.98 x 104) showed nearly 3 and 2 orders of magnitude higher hole mobility upon annealing at 305 and 260 degrees C, with compared to the unsubstituted PTTBTz.X1165Ysciescopu

    Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity

    Get PDF
    The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.112820Ysciescopu

    Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection

    Get PDF
    Pandemics in poultry caused by the highly pathogenic avian influenza (HPAI) A virus occur too frequently globally, and there is growing concern about the HPAI A virus due to the possibility of a pandemic among humans. Thus, it is important to develop a vaccine against HPAI suitable for both humans and animals. Various approaches are underway to develop such vaccines. In particular, an edible vaccine would be a convenient way to vaccinate poultry because of the behaviour of the animals. However, an edible vaccine is still not available. In this study, we developed a strategy of effective vaccination of mice by the oral administration of transgenic Arabidopsis plants (HA-TG) expressing haemagglutinin (HA) in the endoplasmic reticulum (ER). Expression of HA in the ER resulted in its high-level accumulation, N-glycosylation, protection from proteolytic degradation and long-term stability. Oral administration of HA-TG with saponin elicited high levels of HA-specific systemic IgG and mucosal IgA responses in mice, which resulted in protection against a lethal influenza virus infection with attenuated inflammatory symptoms. Based on these results, we propose that oral administration of freeze-dried leaf powders from transgenic plants expressing HA in the ER together with saponin is an attractive strategy for vaccination against influenza A virus.X111411Ysciescopu

    SUMO-Specific Protease 2 (SENP2) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle

    Get PDF
    Small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) that reverse protein modification by SUMO are involved in the control of numerous cellular processes, including transcription, cell division, and cancer development. However, the physiological function of SENPs in energy metabolism remains unclear. Here, we investigated the role of SENP2 in fatty acid metabolism in C2C12 myotubes and in vivo. In C2C12 myotubes, treatment with saturated fatty acids, like palmitate, led to nuclear factor-B-mediated increase in the expression of SENP2. This increase promoted the recruitment of peroxisome proliferator-activated receptor (PPAR) and PPAR, through desumoylation of PPARs, to the promoters of the genes involved in fatty acid oxidation (FAO), such as carnitine-palmitoyl transferase-1 (CPT1b) and long-chain acyl-CoA synthetase 1 (ACSL1). In addition, SENP2 overexpression substantially increased FAO in C2C12 myotubes. Consistent with the cell culture system, muscle-specific SENP2 overexpression led to a marked increase in the mRNA levels of CPT1b and ACSL1 and thereby in FAO in the skeletal muscle, which ultimately alleviated high-fat diet-induced obesity and insulin resistance. Collectively, these data identify SENP2 as an important regulator of fatty acid metabolism in skeletal muscle and further implicate that muscle SENP2 could be a novel therapeutic target for the treatment of obesity-linked metabolic disorders.11116Ysciescopu

    Interactions between Transmembrane Helices within Monomers of the Aquaporin AtPIP2;1 Play a Crucial Role in Tetramer Formation

    Get PDF
    Aquaporin (AQP) is a water channel protein found in various subcellular membranes of both prokaryotic and eukaryotic cells. The physiological functions of AQPs have been elucidated in many organisms. However, understanding their biogenesis remains elusive, particularly regarding how they assemble into tetramers. Here, we investigated the amino acid residues involved in the tetramer formation of the Arabidopsis plasma membrane AQP AtPIP2; 1 using extensive amino acid substitution mutagenesis. The mutant proteins V41A/E44A, F51A/L52A, F87A/I91A, F92A/I93A, V95A/Y96A, and H216A/L217A, harboring alanine substitutions in the transmembrane (TM) helices of AtPIP2; 1 polymerized into multiple oligomeric complexes with a variable number of subunits greater than four. Moreover, these mutant proteins failed to traffic to the plasma membrane, instead of accumulating in the endoplasmic reticulum(ER). Structure-based modeling revealed that these residues are largely involved in interactions between TM helices within monomers. These results suggest that inter-TM interactions occurring both within and between monomers play crucial roles in tetramer formation in the AtPIP2; 1 complex. Moreover, the assembly of AtPIP2; 1 tetramers is critical for their trafficking from the ER to the plasma membrane, as well as water permeability.1133Ysciescopu
    corecore